Fourier-stieltjes Algebras of Locally Compact Groupoids

نویسندگان

  • Arlan Ramsay
  • Martin E. Walter
چکیده

For locally compact groups, Fourier algebras and Fourier-Stieltjes algebras have proved to be useful dual objects. They encode the representation theory of the group via the positive deenite functions on the group: positive deenite functions correspond to cyclic representations and span these algebras as linear spaces. They encode information about the algebra of the group in the geometry of the Banach space structure, and the group appears as a topological subspace of the maximal ideal space of the algebra W1, W2]. Because groupoids and their representations appear in studying operator algebras, ergodic theory, geometry, and the representation theory of groups, it would be useful to have a duality theory for them. This paper gives a rst step toward extending the theory of Fourier-Stieltjes algebras from groups to groupoids. If G is a locally compact (second countable) groupoid, we show that B(G), the linear span of the Borel positive deenite functions on G, is a Banach algebra when represented as an algebra of completely bounded maps on a C-algebra associated with G. This necesarily involves identifying equivalent elements of B(G). An example shows that the linear span of the continuous positive deenite functions need not be complete. For groups, B(G) is isometric to the Banach space dual of C (G). For groupoids, the best analog of that fact is to be found in a representation of B(G) as a Banach space of completely bounded maps from a C-algebra associated with G to a C-algebra associated with the equivalence relation induced by G. This paper adds weight to the clues in the earlier study of Fourier-Stieltjes algebras that there is a much more general kind of duality for Banach algebras waiting to be explored W5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some notes on L-projections on Fourier-Stieltjes algebras

In this paper, we investigate the relation between L-projections and conditional expectations on subalgebras of the Fourier Stieltjes algebra B(G), and we will show that compactness of G plays an important role in this relation.

متن کامل

The Restricted Algebras on Inverse Semigroups Iii, Fourier Algebra

The Fourier and Fourier-Stieltjes algebras A(G) and B(G) of a locally compact group G are introduced and studied in 60’s by Piere Eymard in his PhD thesis. If G is a locally compact abelian group, then A(G) ≃ L(Ĝ), and B(G) ≃ M(Ĝ), via the Fourier and Fourier-Stieltjes transforms, where Ĝ is the Pontryagin dual of G. Recently these algebras are defined on a (topological or measured) groupoid an...

متن کامل

(Non-)amenability of Fourier and Fourier–Stieltjes algebras

Let G be a locally compact group. We show that its Fourier algebra A(G) is amenable if and only if G has an abelian subgroup of finite index, and that its Fourier– Stieltjes algebra B(G) is amenable if and only if G has a compact, abelian subgroup of finite index.

متن کامل

00 5 Operator Amenability of Fourier – Stieltjes Algebras , Ii

We give an example of a non-compact, locally compact group G such that its Fourier–Stieltjes algebra B(G) is operator amenable. Furthermore, we characterize those G for which A * (G)—the spine of B(G) as introduced by M. Ilie and the second named author—is operator amenable and show that A * (G) is operator weakly amenable for each G.

متن کامل

C-pseudo-multiplicative unitaries and Hopf C-bimodules

We introduce C∗-pseudo-multiplicative unitaries and concrete Hopf C∗-bimodules for the study of quantum groupoids in the setting of C∗-algebras. These unitaries and Hopf C∗-bimodules generalize multiplicative unitaries and Hopf C∗-algebras and are analogues of the pseudo-multiplicative unitaries and Hopf–von Neumann-bimodules studied by Enock, Lesieur and Vallin. To each C∗-pseudo-multiplicativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996